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“Higgs boson”

• Higgs boson fund at LHC


• mH = 125 GeV


• so far consistent with Standard Model Higgs  (JPC=0++) fundamental scalar


• but it could be different


• one of the possibilities:


• composite Higgs


• SM Higgs is the low energy effective description of that, cf: ChPT ⇔ QCD



Role of SM Higgs

• It’s about the origin of mass...


• (99% of the mass of visible universe is made by QCD dynamics)


• masses of fundamental particles:  quarks, leptons, weak bosons


• by EW gauge symmetry breaking through Higgs



Higgs mechanism   (cf. Farhi & Susskind)

• Higgs potential : V=μ2 |φ|2 + λ|φ|4  with μ2<0: “wine bottle”


• rotating:  m=0 mode


• radial:     m≠0: Higgs particle


• weak doublet: 4 fields: 1 massive Σ, 3 massless


• massless:  Π±, Π0    :  Nambu-Goldstone boson  (rotational symm. br.)


• have coupling to weak current:〈0|Jμ±|Π±〉= F pμ;       F =〈0|φ|0〉= 246 GeV


• make a massless pole in the vacuum polarization 


• cancels massless pole of original W± propagator → massive gauge boson



〈0|Jμ±|Π±〉= F pμ

• Isn’t it familiar ?   :〈0|Jμ±|Π±〉= F pμ  with massless boson Π±


• pion decay:          〈0|Aμ±|π±〉= f pμ   


• π± π0 Nambu-Goldstone boson made of u, q quarks due to 


• SU(2)LxSU(2)R → SU(2)V : spontaneous chiral symmetry breaking


• in the real world: pseudo NG boson


• f=93 MeV  ⇔  F=246 GeV


• axial current Aμ± is a part of weak current Jμ±:  (V-A)


• Even if there is no Higgs, weak boson gets massive due to chiral br. in QCD



Technicolor (TC)

• 〈0|Jμ±|Π±〉= F pμ


• realize this with a new set of


• massless quarks (techni-quarks)


• which have coupling to weak bosons,


• and interact with techni-gluons


• which breaks the chiral symmetry in the techni-sector,


• produces techni-pions which have decay constant


➡F = 246 /√N GeV:   scale up version of QCD  (N:  # weak doublet from new techni-sector)



Technicolor ⇔ SM Higgs

• success of technicolor


• explaining the origin of EW symmetry breaking


• dynamics of gauge theory  ⇔  μ2 < 0


• evading the gauge hierarchy problem: naturalness problem


• due to logarithmic UV divergence ⇔  power divergence


• fermion masses ?


• ETC effective 4 Fermi interaction   ⇔   fermion-Higgs Yukawa coupling


• produced by introducing interaction: techni-quarks and SM fermions



Extended Technicolor (ETC)

• fermion masses → extended technicolor (ETC)


• New strong interaction of SU(NETC): NETC>NTC, TETC=( T, f ):  T∈TC, f∈SM


• SSB: SU(NETC)→SU(NTC) x SM  @ ΛETC (≫ΛTC)


•  


•                               FCNC


• FCNC should be small  ⇔ top or bottom quark mass should be produced
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Walking Technicolor

• key: to realize suppressed FCNC and appropriate size of fermion masses


[Holdom, Yamawaki-Bando-Matsumoto]


!

• renormalized gauge coupling


• to run very slowly (walking)


• eventually grows at low energies → to produce techni-pions


• mass anomalous dimension 


• large: γm~1
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models being studied:

• SU(3)


• fundamental: Nf=6, 8, 10, 12, 16


• sextet: Nf=2


• SU(2)


• adjoint: Nf=2


• fundamental: Nf=8


• SU(4)


• decuplet: Nf=2
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Conformal window Luigi Del Debbio

conformal window: SU(3) with n f = 16,12,10,9,8,6 flavors in the fundamental representation,
SU(2) with n f = 6 flavors in the fundamental, SU(2) with n f = 2 flavors in the adjoint represen-
tation, and SU(3) with n f = 2 flavors in the two-index symmetric (sextet) representation. At these
early stages of the nonperturbative studies of the conformal window it is important to try to identify
a paradigm to guide the numerical investigations, rather than trying to get exhaustive results on one
specific theory.
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Figure 3: Boundaries of the conformal window for SU(N) gauge theories with n f species of Dirac fermions.
The four bands represent respectively fermions in the fundamental (Fund), adjoint (A) and two-index sym-
metric and antisymmetric (2S,2A) representations. The upper limit of each band corresponds to the number
of flavors where asymptotic freedom is lost, as obtained from one-loop perturbative computations. The
lower limit of each band yields the number of flavors above which the theories develop an IR fixed point.
The location of these lower limits relies upon assumptions about the nonperturbative dynamics of the theo-
ries. Lattice simulations can provide first-principle evidence in favour (or against) this picture, and compute
the critical exponents that characterize the fixed points. Figure courtesy of F. Sannino.

2. Tools

Numerical tools that were originally designed for investigating lattice QCD have been used in
order to identify the existence of IRFPs. We describe briefly the main ideas, the observables that
are used in the different approaches, and their expected behaviour in the presence of an IRFP. For
each case we try to emphasize the sources of systematic errors that need to be kept under control
in order to draw robust conclusions from numerical data.

2.1 Phase structure of the lattice theories.

Lattice simulations are performed by discretizing the action of a given theory on a Euclidean
space-time lattice. At weak coupling the RG flow can be computed perturbatively, and the relevant
parameters are easily identified. For an asymptotically-free gauge theory, g = 0 is an UV fixed
point that defines the usual continuum limit of the lattice theory. The IRFP that we are seeking is
a fixed point on the massless renormalized trajectory that originates from the continuum limit. As
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LatKMI mission

• find / understand (near) conformal dynamics in gauge theory:  late 2010


• using a state-of-the-art lattice discretization (HISQ) and computation


• find conformal window in SU(3) gauge theory w. Nf m=0 fundamental 
fermions


• find a walking technicolor theory in SU(3) gauge theory


• investigate Nf=8 in some detail


• investigate flavor singlet scalar in SU(3) gauge theory


• test Nf=8 against experiment



LatKMI publications

• LatKMI, PRD 85 (2012), “Study of the conformal hyperscaling relation through 
the Schwinger-Dyson equation” [non-lattice]


• LatKMI, PRD 86 (2012), “Lattice study of conformality in twelve-flavor QCD”


• LatKMI, PRD 87 (2013), “Walking signals in Nf=8 QCD on the lattice”


• LatKMI, PRL 111 (2013), “Light composite scalar in twelve-flavor QCD on the 
lattice”
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Simulation

• Fermion Formulation: HISQ (Highly Improved Staggered Quarks)


• being used for state-of-the-art QCD calculations / MILC,..


• Gauge Field Formulation:tree level Symanzik gauge


• Nf=4: β=6/g2=3.7,    V=L3xT: L/T=2/3; L=12, 16


• Nf=8: β=6/g2=3.8,    V=L3xT: L/T=3/4; L=18, 24, 30, 36


• Nf=12 (two lattice spacings): 


• β=6/g2=3.7,    V=L3xT: L/T=3/4; L=18, 24, 30,    0.04≦mf≦0.2


• β=6/g2=4.0,    V=L3xT: L/T=3/4; L=18, 24, 30,    0.05≦mf≦0.24


!

• using MILC code v7, with modification: HMC and speed up in MD



staggered flavor symmetry for Nf=12 HISQ

• comparing masses with different staggered operators for π & ρ for β=3.7


!

!

!

!

!

!

• excellent staggered flavor symmetry, thanks to HISQ
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FIG. 20. The effective mass of both two operators at β = 3.7, 4 on (L/a, T/a) = (30, 40). {fig:spectrum}

Appendix B: Analysis of conformal hypothesis fit

{sec:conformal_fit}

In this appendix we show the details of fit results on the conformal hypothesis.

In the conformal hypothesis with a finite volume, we make an attempt to use the fit

functions given in Eq. 14. In the generic situation, however, we do not know how and what

kind of such correction terms can appear from the RG analysis. Therefore in this appendix

we fix the value of the exponent α to a certain value in the fit since it is hard to determine

both two exponents of the power behavior from the fit. We consider three possible value of

alpha as α = (3 − 2γ)/(1 + γ), 1 and 2, so we denote these fit functions as fit b-1, fit b-2

and fit b-3, respectively. We carry out simultaneous fit with above fit functions using all the

data for Mπ, Fπ and Mρ with common anomalous dimension γ and α. We also use same

data points for the fit as in the section V. As already discussed in the section V, additional

correction terms improve the accuracy of the fit efficiently for both case of β = 3.7 and

β = 4. On the other hand, each of the fit results with correction term gives same magnitude

of χ2/dof. Thus in this analysis it is not easy to determine both of γ and α.
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Hadron spectrum:  
         mf-response in mass deformed theory

• IR conformal phase:


• coupling runs for μ<mf:   like nf=0 QCD with ΛQCD~mf


• multi particle state :  MH ∝ mf1/(1+γm*);   Fπ ∝ mf1/(1+γm*)    (criticality @ IRFP)


!

• SχSB phase:


• ChPT


• at leading:  Mπ2 ∝ mf,  ;   Fπ = F + c mf



a crude study using ratios

• conformal scenario:


• MH ∝ mf1/(1+γm*);   Fπ ∝ mf1/(1+γm*)   for small mf


★  Fπ/Mπ → const.                          for small mf


★  Mρ/Mπ → const.                         for small mf


• chiral symmetry breaking scenario:


• Mπ2 ∝ mf,  ;   Fπ = F + c’ Mπ2      for small mf


★  Fπ/Mπ → ∞                                 for   mf → 0



a crude analysis: Fπ/Mπ vs Mπ

mf # trj. Mπ Mρ Fπ

0.04 700 0.3024(16) 0.3777(47) 0.0633(6)

0.05 600 0.3513(12) 0.4332(19) 0.0738(8)

0.06 500 0.3994(15) 0.4888(14) 0.0840(7)

0.08 500 0.4875(9) 0.5965(10) 0.1017(6)

0.1 500 0.5670(7) 0.6927(14) 0.1167(3)

0.12 500 0.6460(7) 0.7899(22) 0.1328(4)

0.16 400 0.7877(6) 0.9549(14) 0.1586(5)

0.2 400 0.9193(6) 1.1049(22) 0.1821(6)

TABLE V. The results of the spectra on V =

303 × 40 at β = 3.7. {tab:5}

mf # trj. Mπ Mρ Fπ

0.05 600 0.3163(27) 0.3693(49) 0.0633(9)

0.06 600 0.3634(15) 0.4336(22) 0.0729(4)

0.08 600 0.4508(12) 0.5311(21) 0.0898(7)

0.1 600 0.5227(9) 0.6174(21) 0.1017(7)

0.12 600 0.5966(10) 0.7027(22) 0.1149(7)

0.16 500 0.7308(8) 0.8519(12) 0.1380(7)

0.2 500 0.8568(6) 0.9921(6) 0.1585(8)

TABLE VI. The results of the spectra on

V = 303 × 40 at β = 4. {tab:6}
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FIG. 2. Dimension-less ratio Fπ/Mπ as a function of Mπ for Nf = 4 at β = 3.7. Due to the

spontaneous chiral symmetry breaking, the ratio diverges in the chiral limit. {fig:ratio_mf_nf4}

dependence.

Similar observation can be made for the other ratio Mρ/Mπ shown in the right panel of

Fig. 3. Here, the flattening is observed for β = 3.7 again, however the range is wider than

Fπ/Mπ. In this case β = 4 shows the flattening, also. The difference of the constant is made

possible due to a discretization effect.

In the following sections, further detailed study using these data are performed. From

the observation here, we note that the only the smaller mass data would qualify the hyper

scaling test if there is any, if only a leading mass dependence is taken into account. Further,

11

Nf=4
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a crude analysis: Fπ/Mπ vs Mπ

• tends to diverge towards the chiral limit (Mπ→0)

• spontaneous chiral symmetry breaking
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TABLE VI. The results of the spectra on

V = 303 × 40 at β = 4. {tab:6}
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FIG. 2. Dimension-less ratio Fπ/Mπ as a function of Mπ for Nf = 4 at β = 3.7. Due to the

spontaneous chiral symmetry breaking, the ratio diverges in the chiral limit. {fig:ratio_mf_nf4}

dependence.

Similar observation can be made for the other ratio Mρ/Mπ shown in the right panel of

Fig. 3. Here, the flattening is observed for β = 3.7 again, however the range is wider than

Fπ/Mπ. In this case β = 4 shows the flattening, also. The difference of the constant is made

possible due to a discretization effect.

In the following sections, further detailed study using these data are performed. From

the observation here, we note that the only the smaller mass data would qualify the hyper

scaling test if there is any, if only a leading mass dependence is taken into account. Further,
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a crude analysis: Fπ/Mπ vs Mπ
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a crude analysis: Fπ/Mπ vs Mπ

• tends to diverge towards the chiral limit (Mπ→0)

• spontaneous chiral symmetry breaking, likely
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a crude analysis: Fπ/Mπ vs Mπ

• β=3.7: small mass: consistent with conformal scenario

• β=4.0: volume likely to small to discuss the scaling
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a crude analysis: Mρ/Mπ vs Mπ

• β=3.7 & 4.0: small mass (wider than Fπ): consistent with hyper scaling (HS)

• mass dependence at the tail is due to non-universal mass correction to HS

Nf=12: HISQ

• one may attempt to perform a 
matching

➡a(β=3.7) / a(β=4.0) > 1
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a crude analysis: Mρ/Mπ vs Mπ

• β=3.7 & 4.0: small mass (wider than Fπ): consistent with hyper scaling (HS)

• mass dependence at the tail is due to non-universal mass correction to HS

Nf=12: HISQ

• one may attempt to perform a 
matching

➡a(β=3.7) / a(β=4.0) > 1

• consistent with UV 
asymptotic freedom
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Walking Technicolor

• key: to realize suppressed FCNC and appropriate size of fermion masses

[Holdom, Yamawaki-Bando-Matsumoto]

• renormalized gauge coupling

• to run very slowly (walking)

• eventually grows at low energies → to produce techni-pions

• mass anomalous dimension 

• large: γm~1

µ
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• chiral symmetry• conformality

mf # trj. Mπ Mρ Fπ

0.04 700 0.3024(16) 0.3777(47) 0.0633(6)

0.05 600 0.3513(12) 0.4332(19) 0.0738(8)

0.06 500 0.3994(15) 0.4888(14) 0.0840(7)

0.08 500 0.4875(9) 0.5965(10) 0.1017(6)

0.1 500 0.5670(7) 0.6927(14) 0.1167(3)

0.12 500 0.6460(7) 0.7899(22) 0.1328(4)

0.16 400 0.7877(6) 0.9549(14) 0.1586(5)

0.2 400 0.9193(6) 1.1049(22) 0.1821(6)

TABLE V. The results of the spectra on V =

303 × 40 at β = 3.7. {tab:5}

mf # trj. Mπ Mρ Fπ

0.05 600 0.3163(27) 0.3693(49) 0.0633(9)

0.06 600 0.3634(15) 0.4336(22) 0.0729(4)

0.08 600 0.4508(12) 0.5311(21) 0.0898(7)

0.1 600 0.5227(9) 0.6174(21) 0.1017(7)

0.12 600 0.5966(10) 0.7027(22) 0.1149(7)

0.16 500 0.7308(8) 0.8519(12) 0.1380(7)

0.2 500 0.8568(6) 0.9921(6) 0.1585(8)

TABLE VI. The results of the spectra on

V = 303 × 40 at β = 4. {tab:6}
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FIG. 2. Dimension-less ratio Fπ/Mπ as a function of Mπ for Nf = 4 at β = 3.7. Due to the

spontaneous chiral symmetry breaking, the ratio diverges in the chiral limit. {fig:ratio_mf_nf4}

dependence.

Similar observation can be made for the other ratio Mρ/Mπ shown in the right panel of

Fig. 3. Here, the flattening is observed for β = 3.7 again, however the range is wider than

Fπ/Mπ. In this case β = 4 shows the flattening, also. The difference of the constant is made

possible due to a discretization effect.

In the following sections, further detailed study using these data are performed. From

the observation here, we note that the only the smaller mass data would qualify the hyper

scaling test if there is any, if only a leading mass dependence is taken into account. Further,
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•                    　　　　　　 mf→0


•                                                     
intermediate mf


• γ~0.9
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conformal (finite size) scaling

• Scaling dimension at IR fixed point [Wilson-Fisher];  Hyper Scaling [Miransky]


• mass dependence is described by anomalous dimensions at IRFP


• quark mass anomalous dimension


• operator anomalous dimension


• hadron mass and pion decay constant obey same scaling 


!

• finite size scaling in a L4 box (DeGrand; Zwicky; Del Debbio et al)


• scaling variable: 
x = Lm

1
1+�⇤

f

�⇤

F⇡ / m
1
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f

L ·MH = fH(x)
L · F⇡ = fF (x)

MH / m
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1+�⇤

f



Nf=4  see if data align at some γ

0 1 2 3 4 5
x

0

1

2

3

4

5

6

7

ξ π

12^3 x 18
16^3 x 24

γ=0.5

0 1 2 3 4 5
x

0

1

2

3

4

5

6

7

ξ π

12^3 x 18
16^3 x 24

γ=1.0

0 1 2 3 4 5
x

0

1

2

3

4

5

6

7

ξ π

12^3 x 18
16^3 x 24

γ=1.5

FIG. 7. ξπ plotted against the scaling variable x for γ = 0.5, 1.0, 1.5 from left to right for Nf = 4

at β = 3.7, where spontaneous chiral symmetry breaking occurs. An alignment found at γ = 1 is

consistent with Eq. (5) {fig:nf4_mpi_g}
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FIG. 8. ξF v.s. x for γ = 0, 1, 2 from left to right for Nf = 4 at β = 3.7. No alignment found. {fig:nf4_fpi_g}

deviation away from the measured value as an average through all the points, this function

would give 1.

For simplicity we will take the linear interpolation of ξ in x, which is a good approximation

of ξ for large x. The systematic error associated with the interpolation will be estimated by

the difference of the interpolations with linear and quadratic spline.

We estimate the error of γ from the statistical fluctuation of the minimum of Pp(γ)

calculated by the parametric bootstrap method to properly take into account the possible

statistical correlation in Eq. (12), where the distribution of ξjp is regenerated as a Gaussian

with the width being the error of ξjp. The form of the evaluation function is similar as the

one used in the literature [27, 37, 38]. While we use an error weighted definition of the

evaluation function, they have used the one without the weight for primary analysis. The

unweighted version of the evaluation function has been tested in our analysis, too, which

resulted in the consistent values of optimal γ.
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at β = 3.7, where spontaneous chiral symmetry breaking occurs. An alignment found at γ = 1 is

consistent with Eq. (5) {fig:nf4_mpi_g}
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deviation away from the measured value as an average through all the points, this function

would give 1.

For simplicity we will take the linear interpolation of ξ in x, which is a good approximation

of ξ for large x. The systematic error associated with the interpolation will be estimated by

the difference of the interpolations with linear and quadratic spline.

We estimate the error of γ from the statistical fluctuation of the minimum of Pp(γ)

calculated by the parametric bootstrap method to properly take into account the possible

statistical correlation in Eq. (12), where the distribution of ξjp is regenerated as a Gaussian

with the width being the error of ξjp. The form of the evaluation function is similar as the

one used in the literature [27, 37, 38]. While we use an error weighted definition of the

evaluation function, they have used the one without the weight for primary analysis. The

unweighted version of the evaluation function has been tested in our analysis, too, which

resulted in the consistent values of optimal γ.
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deviation away from the measured value as an average through all the points, this function

would give 1.

For simplicity we will take the linear interpolation of ξ in x, which is a good approximation

of ξ for large x. The systematic error associated with the interpolation will be estimated by

the difference of the interpolations with linear and quadratic spline.

We estimate the error of γ from the statistical fluctuation of the minimum of Pp(γ)

calculated by the parametric bootstrap method to properly take into account the possible

statistical correlation in Eq. (12), where the distribution of ξjp is regenerated as a Gaussian

with the width being the error of ξjp. The form of the evaluation function is similar as the

one used in the literature [27, 37, 38]. While we use an error weighted definition of the

evaluation function, they have used the one without the weight for primary analysis. The

unweighted version of the evaluation function has been tested in our analysis, too, which

resulted in the consistent values of optimal γ.
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deviation away from the measured value as an average through all the points, this function

would give 1.

For simplicity we will take the linear interpolation of ξ in x, which is a good approximation

of ξ for large x. The systematic error associated with the interpolation will be estimated by

the difference of the interpolations with linear and quadratic spline.

We estimate the error of γ from the statistical fluctuation of the minimum of Pp(γ)

calculated by the parametric bootstrap method to properly take into account the possible

statistical correlation in Eq. (12), where the distribution of ξjp is regenerated as a Gaussian

with the width being the error of ξjp. The form of the evaluation function is similar as the

one used in the literature [27, 37, 38]. While we use an error weighted definition of the

evaluation function, they have used the one without the weight for primary analysis. The

unweighted version of the evaluation function has been tested in our analysis, too, which

resulted in the consistent values of optimal γ.
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deviation away from the measured value as an average through all the points, this function

would give 1.

For simplicity we will take the linear interpolation of ξ in x, which is a good approximation

of ξ for large x. The systematic error associated with the interpolation will be estimated by

the difference of the interpolations with linear and quadratic spline.

We estimate the error of γ from the statistical fluctuation of the minimum of Pp(γ)

calculated by the parametric bootstrap method to properly take into account the possible

statistical correlation in Eq. (12), where the distribution of ξjp is regenerated as a Gaussian

with the width being the error of ξjp. The form of the evaluation function is similar as the

one used in the literature [27, 37, 38]. While we use an error weighted definition of the

evaluation function, they have used the one without the weight for primary analysis. The

unweighted version of the evaluation function has been tested in our analysis, too, which

resulted in the consistent values of optimal γ.
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Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by

Pp(γ) =
1

N
∑

K

∑

j ̸∈K

|ξjp − f (K)
p (xj)|2

δ2ξjp
, (12) {eq:p}

where K runs through different lattice size, and for each K, j runs through all the measured

points in a certain range excluding those which belong to K, δ2ξjp is the squared error of ξjp,

and N denotes the total number of summation. If the interpolated value were one standard

14

L ·M⇡
0 2 4 6 8 10 12

x
0

5

10

15

20

25

30

ξ π

18^3 x 24
24^3 x 32
30^3 x 40

γ=0.1

0 2 4 6 8 10 12
x

0

5

10

15

20

25

30

ξ π

18^3 x 24
24^3 x 32
30^3 x 40

γ=0.4

0 2 4 6 8 10 12
x

0

5

10

15

20

25

30

ξ π

18^3 x 24
24^3 x 32
30^3 x 40

γ=0.7

FIG. 5. ξπ plotted against the scaling variable x for γ = 0.1, 0.4, 0.7 from left to right for Nf = 12

at β = 3.7. An alignment is found for γ ∼ 0.4. {fig:mpi_g}

0 2 4 6 8 10 12
x

0

1

2

3

4

5

6

ξ F

18^3 x 24
24^3 x 32
30^3 x 40

γ=0.2

0 2 4 6 8 10 12
x

0

1

2

3

4

5

6

ξ F

18^3 x 24
24^3 x 32
30^3 x 40

γ=0.5

0 2 4 6 8 10 12
x

0

1

2

3

4

5

6

ξ F

18^3 x 24
24^3 x 32
30^3 x 40

γ=0.8

FIG. 6. ξF v.s. x for γ = 0.2, 0.5, 0.8 from left to right for Nf = 12 at β = 3.7 γ ∼ 0.5. {fig:fpi_g}

Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by

Pp(γ) =
1

N
∑

K

∑

j ̸∈K

|ξjp − f (K)
p (xj)|2

δ2ξjp
, (12) {eq:p}

where K runs through different lattice size, and for each K, j runs through all the measured

points in a certain range excluding those which belong to K, δ2ξjp is the squared error of ξjp,

and N denotes the total number of summation. If the interpolated value were one standard
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Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by

Pp(γ) =
1

N
∑

K

∑

j ̸∈K

|ξjp − f (K)
p (xj)|2

δ2ξjp
, (12) {eq:p}

where K runs through different lattice size, and for each K, j runs through all the measured

points in a certain range excluding those which belong to K, δ2ξjp is the squared error of ξjp,

and N denotes the total number of summation. If the interpolated value were one standard
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Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by

Pp(γ) =
1

N
∑

K

∑

j ̸∈K

|ξjp − f (K)
p (xj)|2

δ2ξjp
, (12) {eq:p}

where K runs through different lattice size, and for each K, j runs through all the measured

points in a certain range excluding those which belong to K, δ2ξjp is the squared error of ξjp,

and N denotes the total number of summation. If the interpolated value were one standard
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Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by

Pp(γ) =
1

N
∑

K

∑

j ̸∈K

|ξjp − f (K)
p (xj)|2

δ2ξjp
, (12) {eq:p}

where K runs through different lattice size, and for each K, j runs through all the measured

points in a certain range excluding those which belong to K, δ2ξjp is the squared error of ξjp,

and N denotes the total number of summation. If the interpolated value were one standard
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Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by

Pp(γ) =
1

N
∑

K

∑

j ̸∈K

|ξjp − f (K)
p (xj)|2

δ2ξjp
, (12) {eq:p}

where K runs through different lattice size, and for each K, j runs through all the measured

points in a certain range excluding those which belong to K, δ2ξjp is the squared error of ξjp,

and N denotes the total number of summation. If the interpolated value were one standard
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•  fp(x): interpolation .... linear

• (quadratic for a systematic error)

• if ξj is away from f(xi) by δ ξj as average→P=1

• optimal γ from the minimum of P

• similar definition of the measure: DeGrand,  Giedt & Weinberg
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with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to
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•  γ of optimal alignment will minimize:

•  ξp=LMp  for p=π, ρ;   ξF=LFπ

•  fp(x): interpolation .... linear

• (quadratic for a systematic error)

• if ξj is away from f(xi) by δ ξj as average→P=1

• optimal γ from the minimum of P

• similar definition of the measure: DeGrand,  Giedt & Weinberg
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The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by

Pp(γ) =
1

N
∑

K

∑

j ̸∈K

|ξjp − f (K)
p (xj)|2

δ2ξjp
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P (�) analysis for Nf=8
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FIG. 13. The γ dependence of the evaluation function P for Mπ, Fπ, and Mρ at β = 3.7 is

plotted. The vertical axis shows the values of P at each of γ where the three volumes and full

range of x for the data are considered. The solid and dashed curves show the results of P (γ) with

the interpolation functions f(x) by the linear and quadratic functions, respectively.

However, such trends are not observed for the Mρ at β = 4, where one expects the similar

x and L range dependence. As the number of samples have gotten reduced for the fixed

range analysis, a statistical instability might have spoiled the result.

The similar trend for the x-range dependence as for Mρ at β = 3.7 is observed for Fπ at

β = 3.7, too. The direction of the movement is correct, but it does not get close enough to

the value of γ(Mπ). Moreover, the L range dependence is too weak to conclude that it will get

close to γ(Mπ). These results may be understood from the fact that in Sec. III, the scaling

is observed only in the very small mass range. For Fπ at β = 4, the L dependence appears to

be opposite to the expectation, which can be understood as the result of unobserved scaling

in the analysis in Sec. III.

As we cannot completely resolve these trends in the mass dependence, we regard these

variations of γ with respect to the change of the window as the systematic error on the

central value of γ obtained with “all” data. We put the asymmetric error for both x and

L directions separately estimated by the maximum variations from the central value. The

21

quantity γ
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Mρ 0.459(8)
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range analysis, a statistical instability might have spoiled the result.

The similar trend for the x-range dependence as for Mρ at β = 3.7 is observed for Fπ at

β = 3.7, too. The direction of the movement is correct, but it does not get close enough to

the value of γ(Mπ). Moreover, the L range dependence is too weak to conclude that it will get

close to γ(Mπ). These results may be understood from the fact that in Sec. III, the scaling

is observed only in the very small mass range. For Fπ at β = 4, the L dependence appears to

be opposite to the expectation, which can be understood as the result of unobserved scaling

in the analysis in Sec. III.

As we cannot completely resolve these trends in the mass dependence, we regard these

variations of γ with respect to the change of the window as the systematic error on the

central value of γ obtained with “all” data. We put the asymmetric error for both x and

L directions separately estimated by the maximum variations from the central value. The
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plotted. The vertical axis shows the values of P at each of γ where the three volumes and full
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β = 3.7, too. The direction of the movement is correct, but it does not get close enough to

the value of γ(Mπ). Moreover, the L range dependence is too weak to conclude that it will get
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be opposite to the expectation, which can be understood as the result of unobserved scaling

in the analysis in Sec. III.
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TABLE VII. Summary of the optimal values of γ. See the text for details.

x L

quantity β all range 1 range 2 range 3 (18,24) (18,30) (24,30)

Mπ 3.7 0.434(4) 0.425(9) 0.436(6) 0.437(4) 0.438(6) 0.433(4) 0.429(8)

Mπ 4 0.414(5) 0.420(7) 0.418(6) 0.411(5) 0.397(7) 0.414(4) 0.447(9)

Fπ 3.7 0.516(12) 0.481(19) 0.512(19) 0.544(14) 0.526(18) 0.514(11) 0.505(24)

Fπ 4 0.580(15) 0.552(21) 0.602(20) 0.605(19) 0.544(27) 0.577(14) 0.645(32)

Mρ 3.7 0.459(8) 0.411(17) 0.461(10) 0.473(8) 0.491(15) 0.457(8) 0.414(18)

Mρ 4 0.460(9) 0.458(13) 0.455(14) 0.460(8) 0.457(16) 0.459(8) 0.463(15)
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FIG. 13. The γ dependence of the evaluation function P for Mπ, Fπ, and Mρ at β = 3.7 is

plotted. The vertical axis shows the values of P at each of γ where the three volumes and full

range of x for the data are considered. The solid and dashed curves show the results of P (γ) with

the interpolation functions f(x) by the linear and quadratic functions, respectively.

dependence beyond the error bars, and thus ξπ is well described by a function of a single

variable x. If there is IR conformality, the non-universal correction to the hyperscaling is

negligible at this precision. Then, from the fact that in Sec. III the scaling is observed in

the small mass range for the ratio Mρ/Mπ at β = 3.7 it is suggested that there should be

certain window dependence of γ from Mρ. As γ(Mπ) = 0.434(4) and γ(Fπ) = 0.459(8) at

β = 3.7, if one restricts the mass range for Mρ to the smaller side, then the value of γ(Mρ)

should get closer to that of γ(Mπ). This is actually the case, as is observed from Table VII

in which γ(Mρ) reduces for smaller mass range (toward range 1) and larger volume (toward

20
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• β=3.7: smaller m : closer to Mπ
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variable x. If there is IR conformality, the non-universal correction to the hyperscaling is

negligible at this precision. Then, from the fact that in Sec. III the scaling is observed in

the small mass range for the ratio Mρ/Mπ at β = 3.7 it is suggested that there should be

certain window dependence of γ from Mρ. As γ(Mπ) = 0.434(4) and γ(Fπ) = 0.459(8) at

β = 3.7, if one restricts the mass range for Mρ to the smaller side, then the value of γ(Mρ)
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• β=3.7: smaller m : closer to Mπ

• β=3.7: larger V:     closer to Mπ

•
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Nf=8: including smaller mf →  scaling gets worse

Recent study of LatKMI Collaboration
PRD86(2012)054506; arXiv:1302.6859
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X ¼ Nf

!
M!

4!F=
ffiffiffi
2

p
#
2
; (15)

and this quantity is required to satisfy the conditionX < 1,
which, however, could become easily violated when the
simulation is made for heavy M! compared to F. We have
X ¼ Oð1Þ in our smallest mf. Thus, the ChPT is barely
self-consistent in contrast to the case of Nf ¼ 12 where
X ’ 40 [21].

The above analysis suggests that our result in Nf ¼ 8 is
consistent with S"SB phase with

F ¼ 0:0310ð13Þ (16)

up to chiral log. Effects of the chiral log will be discussed
later.

B. Quadratic fits of M! and M2
"

Here, we attempt the quadratic fit of M# and M2
! to see

whether M# ! 0 and M2
! ¼ 0 in the chiral limit.

Figure 9 and Table II are the quadratic fit result of M#.
The chiral limit value of M# (¼ C#

0 ) is estimated using the
fitting range 0:015 $ mf $ 0:04,
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B. FSHS fits with the correction term

Since Nf ¼ 8 theory is in S!SB phase, FSHS cannot
become accurate by approaching to the chiral limit, which
is in contrast to the Nf ¼ 12 where FSHS does [21].
Therefore FSHS is only expected for the larger mass
region, where mass corrections may not be negligible. In
fact, in the last subsection the decreasing tendency of the
"ðM#Þ depending on the fit range is seen, which might
suggest that there are corrections in the simple FSHS form
in Eq. (27), To include mass corrections we assume the
same fitting forms as in the Nf ¼ 12 case [21] as

$H ¼ CH
0 þ CH

1 Xþ CH
2 Lm

%
f : (28)

Since it is hard to determine the exponent % of the correc-
tion term when the fit is performed for each observable
individually, we fix it in our analysis. Among various
choices of the %, we take two values: % ¼ 1 and 2. The
first choice % ¼ 1 is regarded as an mf correction in the

heavy region, and the second one % ¼ 2 may be identified
as a Oða2Þ discretization effect.
Using the fit assumptions we fit each observable with the

same data region as in the last subsection, mf % 0:05 and

$# % 8. The results are tabulated in Table VIII. The fit
results with both% ¼ 1 and 2 of the $# show the correction
term actually takes effect (C#

2 ! 0), with reasonable
!2=dof. Because of the large correction, the " of the $#

is largely changed from the one without the correction term
in Table VI, especially in the % ¼ 1 case, and the value
becomes closer to the ones from the other observables. On
the other hand, for the $F and $& fits, it is found that the

correction is negligible, and the resulting "’s are consistent
with the ones without the correction, presented in Table VI,
as expected in the analyses in the last subsection. While in
the % ¼ 1 case, we obtain reasonable consistency of the "
from the three observables within less than 2 standard
deviations, we cannot exclude the % ¼ 2 fit. Thus, the
above analyses would suggest " ¼ 0:62–0:97 depending
on the observables and also the form of the correction
term.
Since we observed that the values of " with Eq. (28) for

all the observables become closer to each other than those
without the correction terms, it might be possible to obtain
a common value of the " from all the observables using the
fit including the correction. Thus, we perform a simulta-
neous fit using all the observables M#, F#, and M& with a

common ". For simplicity, we assume the absence of the
statistical correlations between each data of M#, F#, and
M&. In the fit we do not fix the value of the %, and treat it as
a free parameter. It is expected that the corrections are
small in the $F and $&, so that we first carry out a fit
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FIG. 14 (color online). ! and h "c c i (left panel) as a function ofmf. The small region, 0 & mf & 0:045 and 0 & !, h "c c i & 0:0006,
in the left panel is enlarged to the right panel. The quadratic fit curves by using the data in 0:015 & mf & 0:04 are shown. The green
symbol is the value in Eq. (20).

TABLE V. Power fit results of F# for various fit ranges, using

F# ¼ C1m
1=ð1þ"Þ
f . The top part of the table shows the results for

the ranges with minimum mass set to the lightest, mf ¼ 0:015,
while the bottom does those with maximum mass being the
heaviest mf ¼ 0:16.

Fit range (mf) C1 " !2=dof

0.015–0.04 0.415(7) 0.988(19) 14.8
0.015–0.05 0.414(5) 0.991(15) 9.84
0.015–0.06 0.418(4) 0.979(12) 7.88
0.015–0.07 0.424(3) 0.963(9) 7.35
0.015–0.08 0.425(3) 0.961(8) 6.15
0.015–0.10 0.426(2) 0.958(7) 5.31
0.015–0.16 0.428(1) 0.952(4) 3.98

0.02–0.16 0.429(1) 0.947(4) 2.22
0.03–0.16 0.431(1) 0.942(5) 1.94
0.04–0.16 0.429(2) 0.950(10) 1.23
0.05–0.16 0.431(2) 0.941(7) 0.66
0.06–0.16 0.429(2) 0.948(9) 0.44
0.07–0.16 0.429(3) 0.950(10) 0.52
0.08–0.16 0.431(3) 0.939(14) 0.20
0.10–0.16 0.432(4) 0.934(19) 0.23
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B. FSHS fits with the correction term

Since Nf ¼ 8 theory is in S!SB phase, FSHS cannot
become accurate by approaching to the chiral limit, which
is in contrast to the Nf ¼ 12 where FSHS does [21].
Therefore FSHS is only expected for the larger mass
region, where mass corrections may not be negligible. In
fact, in the last subsection the decreasing tendency of the
"ðM#Þ depending on the fit range is seen, which might
suggest that there are corrections in the simple FSHS form
in Eq. (27), To include mass corrections we assume the
same fitting forms as in the Nf ¼ 12 case [21] as

$H ¼ CH
0 þ CH

1 Xþ CH
2 Lm

%
f : (28)

Since it is hard to determine the exponent % of the correc-
tion term when the fit is performed for each observable
individually, we fix it in our analysis. Among various
choices of the %, we take two values: % ¼ 1 and 2. The
first choice % ¼ 1 is regarded as an mf correction in the

heavy region, and the second one % ¼ 2 may be identified
as a Oða2Þ discretization effect.
Using the fit assumptions we fit each observable with the

same data region as in the last subsection, mf % 0:05 and

$# % 8. The results are tabulated in Table VIII. The fit
results with both% ¼ 1 and 2 of the $# show the correction
term actually takes effect (C#

2 ! 0), with reasonable
!2=dof. Because of the large correction, the " of the $#

is largely changed from the one without the correction term
in Table VI, especially in the % ¼ 1 case, and the value
becomes closer to the ones from the other observables. On
the other hand, for the $F and $& fits, it is found that the

correction is negligible, and the resulting "’s are consistent
with the ones without the correction, presented in Table VI,
as expected in the analyses in the last subsection. While in
the % ¼ 1 case, we obtain reasonable consistency of the "
from the three observables within less than 2 standard
deviations, we cannot exclude the % ¼ 2 fit. Thus, the
above analyses would suggest " ¼ 0:62–0:97 depending
on the observables and also the form of the correction
term.
Since we observed that the values of " with Eq. (28) for

all the observables become closer to each other than those
without the correction terms, it might be possible to obtain
a common value of the " from all the observables using the
fit including the correction. Thus, we perform a simulta-
neous fit using all the observables M#, F#, and M& with a

common ". For simplicity, we assume the absence of the
statistical correlations between each data of M#, F#, and
M&. In the fit we do not fix the value of the %, and treat it as
a free parameter. It is expected that the corrections are
small in the $F and $&, so that we first carry out a fit
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FIG. 14 (color online). ! and h "c c i (left panel) as a function ofmf. The small region, 0 & mf & 0:045 and 0 & !, h "c c i & 0:0006,
in the left panel is enlarged to the right panel. The quadratic fit curves by using the data in 0:015 & mf & 0:04 are shown. The green
symbol is the value in Eq. (20).

TABLE V. Power fit results of F# for various fit ranges, using

F# ¼ C1m
1=ð1þ"Þ
f . The top part of the table shows the results for

the ranges with minimum mass set to the lightest, mf ¼ 0:015,
while the bottom does those with maximum mass being the
heaviest mf ¼ 0:16.

Fit range (mf) C1 " !2=dof

0.015–0.04 0.415(7) 0.988(19) 14.8
0.015–0.05 0.414(5) 0.991(15) 9.84
0.015–0.06 0.418(4) 0.979(12) 7.88
0.015–0.07 0.424(3) 0.963(9) 7.35
0.015–0.08 0.425(3) 0.961(8) 6.15
0.015–0.10 0.426(2) 0.958(7) 5.31
0.015–0.16 0.428(1) 0.952(4) 3.98

0.02–0.16 0.429(1) 0.947(4) 2.22
0.03–0.16 0.431(1) 0.942(5) 1.94
0.04–0.16 0.429(2) 0.950(10) 1.23
0.05–0.16 0.431(2) 0.941(7) 0.66
0.06–0.16 0.429(2) 0.948(9) 0.44
0.07–0.16 0.429(3) 0.950(10) 0.52
0.08–0.16 0.431(3) 0.939(14) 0.20
0.10–0.16 0.432(4) 0.934(19) 0.23
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• largish γ ~  0.6-1  for various observables

• can be interpreted as “walking”:

• probing energy scale with μ~mf → ladder SD picture
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FIG. 1. Schematic two-loop/ladder picture of the gauge coupling of the massless large Nf QCD as a walking gauge theory in
the SχSB phase near the conformal window. mD is the dynamical mass of the fermion generated by the SχSB. The effects of
the bare mass of the fermion mf would be qualitatively different depending on the cases: Case 1: mf ≪ mD (red dotted line)
well described by ChPT, and Case 2: mf ≫ mD (blue dotted line) well described by the hyper scaling.

finite box L3 and lattice spacing a, which do not exist in the continuum theory we are interested in. Among others
the fermion bare mass mf obviously distorts the ideal behavior of the breaking of the scale symmetry in a way similar
to the continuum theory. Then, disregarding the effects of the lattice parameters L and a for the moment, we may
imagine possible effects of the fermion bare mass on the walking coupling of our target of study as in Fig. 1, which is
suggested by the two-loop/ladder analysis.
Case 1. mf ≪ mD ≪ ΛQCD (red dotted line in Fig. 1): The chiral perturbation theory should hold in a way similar
to the real-life QCD with light quarks.
Case 2. mD ≪ mf ≪ ΛQCD (blue dotted line in Fig. 1): The conformal hyperscaling relation should hold approxi-
mately with a large anomalous dimension γm ≃ 1.
Actually, the SχSB order parameter to be measured on the lattice is not mD but would be the decay constant Fπ of
the Nambu-Goldstone boson π extrapolated to the chiral limit: F = Fπ(mf = 0) which would be expected roughly
the same as mD: mD = O(F ).
There is a caveat about the approximate hyperscaling relation to be expected in the Case 2 (mD ≪ mf ≪ ΛQCD ):

There are two infrared mass parameters mD and mf which violate the infrared conformality and hence the possible
hyperscaling relations for the physical mass quantities measured from the spectrum should not be universal but
do depend on both of them in non-universal ways, in sharp contrast to the hyperscaling relation in the conformal
window where all the mass parameters from the spectra reflects the deformation by the unique infrared scale-violating
parameter mf in a universal way. In particular, when mf is getting close to the region in Case 1, where π mass Mπ

and the other quantities such as ρ mass Mρ and Fπ behave qualitatively different towards the chiral limit: Mπ → 0
while the others remain non-zero.
To date, some groups carried out lattice studies on 8-flavors, with Wilson fermions [10, 11, 23] and with staggered

fermions [12, 15, 24, 25, 30–33]. The Refs. [10, 11, 23] concluded the Nf = 8 is in the conformal window, but Refs
[12, 15, 24, 25, 30, 31] concluded that the Nf = 8 resides on the chiral broken phase. Even if Nf = 8 is in the chiral
broken phase, it has not been investigated whether the behavior of this system is QCD like or the walking with the
large anomalous mass dimension.
In this paper we study the meson spectrum by simulating the Nf = 8 QCD, based on yet another lattice fermion,

Highly Improved Staggered Quark (HISQ) [34], applied to Nf = 8 for the first time. Preliminary reports were given
in Ref. [35]. HISQ action improves the behavior towards the continuum limit through the improvement of the flavor
symmetry. The salient feature of our collaboration is that we have been investigating Nf = 4, 8, 12, 16 on the setting
of HISQ action with the same systematics in order to study the Nf -dependence of the physics systematically [21, 35].
Thus our analyses for Nf = 8 are made in comparison with those for other flavors of our group.
We first show the data of the meson spectrum, Mπ and Fπ, as well as Mρ and the chiral condensate ⟨ψ̄ψ⟩ for

β(≡ 6/g2) = 3.8 on the L3 × T lattice with and L = 12 − 36 and T = 16 − 48, and mf = 0.015 − 0.16. We then
analyze the data based on the Chiral Perturbation Theory (ChPT) [36], particularly for small mf : mf = 0.015− 0.04
(corresponding to Case 1 in Fig. 1 in the above). We find that the ChPT analysis is self-consistent and find a result
consistent with non-zero value of F and Mρ and vanishing of Mπ in the chiral limit extrapolation based on the ChPT
(we also estimate the effects of the chiral logarithm). The chiral condensate is also non-zero value in the chiral limit
extrapolation, which neatly coincides with the Gell-Mann-Oakes-Renner (GMOR) relation obtained from the π data
in the chiral limit extrapolation.
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finite box L3 and lattice spacing a, which do not exist in the continuum theory we are interested in. Among others
the fermion bare mass mf obviously distorts the ideal behavior of the breaking of the scale symmetry in a way similar
to the continuum theory. Then, disregarding the effects of the lattice parameters L and a for the moment, we may
imagine possible effects of the fermion bare mass on the walking coupling of our target of study as in Fig. 1, which is
suggested by the two-loop/ladder analysis.
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to the real-life QCD with light quarks.
Case 2. mD ≪ mf ≪ ΛQCD (blue dotted line in Fig. 1): The conformal hyperscaling relation should hold approxi-
mately with a large anomalous dimension γm ≃ 1.
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the Nambu-Goldstone boson π extrapolated to the chiral limit: F = Fπ(mf = 0) which would be expected roughly
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[12, 15, 24, 25, 30, 31] concluded that the Nf = 8 resides on the chiral broken phase. Even if Nf = 8 is in the chiral
broken phase, it has not been investigated whether the behavior of this system is QCD like or the walking with the
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consistent with non-zero value of F and Mρ and vanishing of Mπ in the chiral limit extrapolation based on the ChPT
(we also estimate the effects of the chiral logarithm). The chiral condensate is also non-zero value in the chiral limit
extrapolation, which neatly coincides with the Gell-Mann-Oakes-Renner (GMOR) relation obtained from the π data
in the chiral limit extrapolation.
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finite box L3 and lattice spacing a, which do not exist in the continuum theory we are interested in. Among others
the fermion bare mass mf obviously distorts the ideal behavior of the breaking of the scale symmetry in a way similar
to the continuum theory. Then, disregarding the effects of the lattice parameters L and a for the moment, we may
imagine possible effects of the fermion bare mass on the walking coupling of our target of study as in Fig. 1, which is
suggested by the two-loop/ladder analysis.
Case 1. mf ≪ mD ≪ ΛQCD (red dotted line in Fig. 1): The chiral perturbation theory should hold in a way similar
to the real-life QCD with light quarks.
Case 2. mD ≪ mf ≪ ΛQCD (blue dotted line in Fig. 1): The conformal hyperscaling relation should hold approxi-
mately with a large anomalous dimension γm ≃ 1.
Actually, the SχSB order parameter to be measured on the lattice is not mD but would be the decay constant Fπ of
the Nambu-Goldstone boson π extrapolated to the chiral limit: F = Fπ(mf = 0) which would be expected roughly
the same as mD: mD = O(F ).
There is a caveat about the approximate hyperscaling relation to be expected in the Case 2 (mD ≪ mf ≪ ΛQCD ):

There are two infrared mass parameters mD and mf which violate the infrared conformality and hence the possible
hyperscaling relations for the physical mass quantities measured from the spectrum should not be universal but
do depend on both of them in non-universal ways, in sharp contrast to the hyperscaling relation in the conformal
window where all the mass parameters from the spectra reflects the deformation by the unique infrared scale-violating
parameter mf in a universal way. In particular, when mf is getting close to the region in Case 1, where π mass Mπ

and the other quantities such as ρ mass Mρ and Fπ behave qualitatively different towards the chiral limit: Mπ → 0
while the others remain non-zero.
To date, some groups carried out lattice studies on 8-flavors, with Wilson fermions [10, 11, 23] and with staggered

fermions [12, 15, 24, 25, 30–33]. The Refs. [10, 11, 23] concluded the Nf = 8 is in the conformal window, but Refs
[12, 15, 24, 25, 30, 31] concluded that the Nf = 8 resides on the chiral broken phase. Even if Nf = 8 is in the chiral
broken phase, it has not been investigated whether the behavior of this system is QCD like or the walking with the
large anomalous mass dimension.
In this paper we study the meson spectrum by simulating the Nf = 8 QCD, based on yet another lattice fermion,

Highly Improved Staggered Quark (HISQ) [34], applied to Nf = 8 for the first time. Preliminary reports were given
in Ref. [35]. HISQ action improves the behavior towards the continuum limit through the improvement of the flavor
symmetry. The salient feature of our collaboration is that we have been investigating Nf = 4, 8, 12, 16 on the setting
of HISQ action with the same systematics in order to study the Nf -dependence of the physics systematically [21, 35].
Thus our analyses for Nf = 8 are made in comparison with those for other flavors of our group.
We first show the data of the meson spectrum, Mπ and Fπ, as well as Mρ and the chiral condensate ⟨ψ̄ψ⟩ for

β(≡ 6/g2) = 3.8 on the L3 × T lattice with and L = 12 − 36 and T = 16 − 48, and mf = 0.015 − 0.16. We then
analyze the data based on the Chiral Perturbation Theory (ChPT) [36], particularly for small mf : mf = 0.015− 0.04
(corresponding to Case 1 in Fig. 1 in the above). We find that the ChPT analysis is self-consistent and find a result
consistent with non-zero value of F and Mρ and vanishing of Mπ in the chiral limit extrapolation based on the ChPT
(we also estimate the effects of the chiral logarithm). The chiral condensate is also non-zero value in the chiral limit
extrapolation, which neatly coincides with the Gell-Mann-Oakes-Renner (GMOR) relation obtained from the π data
in the chiral limit extrapolation.



• chiral log correction included in the systematic error of F

M! ¼ 0:168ð32Þ: (17)

The left panel of Fig. 10 shows M2
" and the right panel

M2
"=mf as a function of mf. The M

2
"=mf goes to constant

towards the chiral limit, which is consistent with the lead-
ing ChPT behavior. However, the visible slope is observed,
indicating that there are higher order corrections. This is in
contrast toNf ¼ 4 shown in Fig. 20. We analyzeM2

" by the
quadratic fit with the constant term to see whether this
constant term becomes zero or not. The result is shown in
Fig. 11. In the fitting region 0:015 $ mf $ 0:04 the con-
stant term is consistent with zero as presented in Table III.
Therefore the chiral property of M! and M" is also con-
sistent with that of S#SB.

C. Chiral condensate

In this subsection, we analyze the chiral condensate,
which is an order parameter of S#SB. We perform a
direct measurement of the chiral condensate h !c c i ¼
Tr½D&1

HISQðx; xÞ'=4 and compare it with the quantity

" ( F2
"M

2
"

4mf
; (18)

which, in the chiral limit, should coincide with the
chiral condensate through the Gell-Mann-Oakes-Renner

(GMOR) relation. Figure 12 shows the h !c c i and " for
each mf. We carry out the quadratic fits for each quantity,
whose results are summarized in Table IV and shown in
Fig. 13. The chiral extrapolations for h !c c i and " give
good values of #2=dof only in the small mf region
0:015 $ mf $ 0:04, though the dof is too small. Both
results in the chiral limit are nonzero, and are consistent
with each other, see Fig. 14:

h !c c ijmf!0 ¼ 0:00052ð5Þ; "jmf!0 ¼ 0:00059ð13Þ:
(19)

We also estimate the chiral condensate in the chiral limit
by multiplying F in Eq. (16) with the value of M2

"=mf in
the chiral limit obtained from the linear fit in Table IV:

F2 )
!
M2

"

4mf

"########mf!0
¼ 0:00050ð3Þ; (20)

which is consistent with those from the direct and indirect
measurements.
From the analyses up to chiral log of all the observables,

F", M", M! and the chiral condensate, we find that the
chiral property of Nf ¼ 8 QCD is consistent with that of
S#SB.
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FIG. 8 (color online). Results of quadratic fit of F" for various
fit ranges.

TABLE I. Results of chiral fit of F" with F" ¼ Fþ C1mf þ C2m
2
f for various fit ranges.

Fit range (mf) F Xðmmin
f ¼ 0:015Þ Xðmf ¼ mmax Þ #2=dof dof

0.015–0.04 0.0310(13) 3.74 11.80 0.46 1

0.015–0.05 0.0278(8) 4.64 19.28 5.56 2

0.015–0.06 0.0284(6) 4.44 23.2 4.09 3

0.015–0.07 0.0293(5) 4.18 26.5 4.46 4

0.015–0.08 0.0296(4) 4.10 30.6 4.06 5

0.015–0.10 0.0311(3) 3.70 37.0 7.85 6

0.015–0.16 0.0349(2) 2.94 54.0 34.2 9
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FIG. 9 (color online). Results of quadratic fit ofM! for various
fit ranges.
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The results for the decay constant and the chiral con-
densate at the chiral limit in this work are

F ¼ 0:031ð1Þ
þ2

%10

 !
; (23)

h !c c ijmf!0 ¼ 0:00052ð5Þ
þ8

%29

 !
; (24)

where the first and second errors are statistical and system-
atic ones, respectively. The lower systematic errors are
coming from the log corrections, while the upper ones
from the others.

It would be useful to estimate physical quantities in units
of the F, because in the technicolor model the F is related
to the weak scale,

ffiffiffiffiffiffi
Nd

p
F=

ffiffiffi
2

p
¼ 246 GeV; (25)

where Nd is the number of the fermion weak doublets as
1 & Nd & Nf=2. From our result, the ratio M!=F in the
chiral limit is given as

M!

F=
ffiffiffi
2

p ¼ 7:7ð1:5Þ
þ3:8

%0:4

 !
; (26)

where the M! in the chiral limit is the result of the qua-
dratic fit in Eq. (17).
In this analysis we observe the large corrections of the

chiral log term in ChPT. In order to reduce the systematic
error of the chiral extrapolation and to obtain more accu-
rate predictions in this theory, we will need simulations at
the smaller mf region on larger volumes.

IV. STUDY OF REMNANTS OF CONFORMALITY

In the previous section we showed that the Nf ¼ 8
theory is in the S"SB phase. However, if this theory is
near the conformal phase boundary, it is expected that
some remnants of the conformal symmetry appear in
physical quantities.
Here we start with an analysis of F# from a different

point of view. In the conformal phase the F# obeys the
hyperscaling relation in the infinite volume, Eq. (11). We

perform the power fit F# ¼ C1m
1=ð1þ$Þ
f with various mf

ranges, where C1 and $ are free parameters. The numerical
results of the power fit are summarized in Table V.
The power fit does not work in the lightest mf region,

0:015 & mf & 0:04, in which the F# is consistent with
ChPT analysis and the F is nonzero as presented in the
previous section. On the other hand, it is remarkable that
the fit results in the mass range, mf * 0:05, are consistent
with the power behavior, the same way as the hyperscaling
relation. Furthermore the estimated $ is stable in the larger
mass region (see the bottom part of Table V), the property
expected from hyperscaling. This suggests that, although
Nf ¼ 8 QCD is in the S"SB phase, there exists a remnant
of the conformality. Therefore, in this section, we will
carry out further in depth analysis, which employs the
hyperscaling test on the finite volume for F# as well as
M# and M!, to investigate whether the remnant of the
conformality really persists.

A. Finite size hyperscaling test

If the system is in the conformal window, the data on a
finite volume is in good agreement with the finite size
hyperscaling (FSHS) having a universal value of $ ¼ $'
at IRFP for observables as given in Eq. (14). In general our
data ofNf ¼ 8 cannot satisfy the FSHS with universal $ in
the whole range of mf, because we showed that the theory
is in the S"SB phase as analyzed in Sec. III. However,
because of the power behavior in the middle range of the
fermion mass as mentioned in the above, we carry out the
FSHS test in our data to find a remnant of the conformality.
For this test, we plot the observables, %F [Eq. (13)], %#,

and %! [Eq. (12)], as functions of X ¼ Lm1=ð1þ$Þ
f with

changing the value of $. Figures 15–17 are the results of
the FSHS test of %F, %#, and %! for various $’s: The data
are aligned (collapsing) at around $ ¼ 1:0, 0.6, and 0.8,
respectively. The optimal values of $ for the observables

TABLE III. Chiral fit results for M2
# with M2

# ¼ C#
0 þ

C#
1mf þ C#

2m
2
f for various fit ranges.

Fit range (mf) C#
0 "2=dof dof

0.015–0.04 0.0016(13) 1.21 1
0.015–0.05 %0:0017ð9Þ 5.90 2
0.015–0.06 %0:0022ð6Þ 4.18 3
0.015–0.07 %0:0032ð5Þ 5.00 4
0.015–0.08 %0:0037ð5Þ 5.44 5
0.015–0.10 %0:0049ð4Þ 7.28 6
0.015–0.16 %0:0071ð3Þ 14.8 9

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
mf

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Σ,
 <

ψψ
>

ψψ >L=12
L=18
L=24
L=30
L=36

Σ

<

FIG. 12 (color online). h !c c i [Eq. (9)] and " [Eq. (18)] as a
function of mf. The open symbol represents h !c c i and the filled
symbol is ".
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M! ¼ 0:168ð32Þ: (17)

The left panel of Fig. 10 shows M2
" and the right panel

M2
"=mf as a function of mf. The M

2
"=mf goes to constant

towards the chiral limit, which is consistent with the lead-
ing ChPT behavior. However, the visible slope is observed,
indicating that there are higher order corrections. This is in
contrast toNf ¼ 4 shown in Fig. 20. We analyzeM2

" by the
quadratic fit with the constant term to see whether this
constant term becomes zero or not. The result is shown in
Fig. 11. In the fitting region 0:015 $ mf $ 0:04 the con-
stant term is consistent with zero as presented in Table III.
Therefore the chiral property of M! and M" is also con-
sistent with that of S#SB.

C. Chiral condensate

In this subsection, we analyze the chiral condensate,
which is an order parameter of S#SB. We perform a
direct measurement of the chiral condensate h !c c i ¼
Tr½D&1

HISQðx; xÞ'=4 and compare it with the quantity

" ( F2
"M

2
"

4mf
; (18)

which, in the chiral limit, should coincide with the
chiral condensate through the Gell-Mann-Oakes-Renner

(GMOR) relation. Figure 12 shows the h !c c i and " for
each mf. We carry out the quadratic fits for each quantity,
whose results are summarized in Table IV and shown in
Fig. 13. The chiral extrapolations for h !c c i and " give
good values of #2=dof only in the small mf region
0:015 $ mf $ 0:04, though the dof is too small. Both
results in the chiral limit are nonzero, and are consistent
with each other, see Fig. 14:

h !c c ijmf!0 ¼ 0:00052ð5Þ; "jmf!0 ¼ 0:00059ð13Þ:
(19)

We also estimate the chiral condensate in the chiral limit
by multiplying F in Eq. (16) with the value of M2

"=mf in
the chiral limit obtained from the linear fit in Table IV:

F2 )
!
M2

"

4mf

"########mf!0
¼ 0:00050ð3Þ; (20)

which is consistent with those from the direct and indirect
measurements.
From the analyses up to chiral log of all the observables,

F", M", M! and the chiral condensate, we find that the
chiral property of Nf ¼ 8 QCD is consistent with that of
S#SB.
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FIG. 8 (color online). Results of quadratic fit of F" for various
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TABLE I. Results of chiral fit of F" with F" ¼ Fþ C1mf þ C2m
2
f for various fit ranges.

Fit range (mf) F Xðmmin
f ¼ 0:015Þ Xðmf ¼ mmax Þ #2=dof dof

0.015–0.04 0.0310(13) 3.74 11.80 0.46 1

0.015–0.05 0.0278(8) 4.64 19.28 5.56 2

0.015–0.06 0.0284(6) 4.44 23.2 4.09 3

0.015–0.07 0.0293(5) 4.18 26.5 4.46 4

0.015–0.08 0.0296(4) 4.10 30.6 4.06 5

0.015–0.10 0.0311(3) 3.70 37.0 7.85 6

0.015–0.16 0.0349(2) 2.94 54.0 34.2 9
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Nf=8 spectrum

• with input Fπ = 246 /√N GeV   (N: # weak doublet in techni-sector)


• prediction:                                                  (with only technicolor dynamics) 


• for example:                                           for one family model: N=4


• Higgs mass ?


• 125 GeV (LHC) seems very light for technicolor


• 0++:  one of the difficult quantities on the lattice


• multi-faceted nature of Nf=8 adds another difficulty: delicate chiral extrapl.


➡ first analyze simpler Nf=12,  which shares “conformality” → techni dilaton


➡Is 0++ state light in (mass deformed) Nf=12 theory ?

M⇢/F⇡ = 7.7(1.5)(+3.8
�0.4)

M⇢ = 970(+515
�195) GeV



flavor singlet scalar spectrum in Nf=12 theory
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FIG. 3: Fermionic mσ and gluonic mG effective masses (re-
spectively from correlators in Eq. (4) and Eq. (5)) for L = 24
and mf = 0.06. The fitted masses are highlighted by dashed
and dotted-dashed lines for the gluonic correlators and dotted
lines for the fermionic one. Systematics effects on the gluonic
mass are not relevant given the larger statistical error.
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FIG. 4: The mass of the flavor–singlet scalar meson σ (see
Table I) compared to the mass of the pseudo–scalar π state
and the mass mG from gluonic operators. Errors are statis-
tical and systematics added in quadrature. The hyperscaling
curve is described in the text. The triangle and filleds square
symbols are slightly shifted for clarity.

each parameter. For mσ on the largest two volumes at
each mf , finite size effects are negligible in our statis-
tics. For a check of consistency with the hyperscaling of
mπ, we fit mσ on the largest volume data at each mf

using the hyperscaling form mσ = C(mf )1/1+γ with a
fixed γ = 0.414 estimated from mπ [10], which gives a
reasonable value of χ2/dof = 0.12. The fit is shown in
Fig.4. We remind here that the fitted data points have
mπL > 11.5, as can be checked from Table. I. We also es-
timate the ratio mσ/mπ at each parameter and report it
in Table I. All the ratios are smaller than unity by more
than one standard deviation including the systematic er-
ror, except the one atmf = 0.06 on L = 30, as previously
explained. A constant fit with the largest volume data at

each mf gives 0.86(3). These results are consistent with
the theory being infrared conformal. Moreover they do
not show an abnormal mf dependence of mσ similar to
the one observed in Ref. [23], by which an effect of an
unphysical phase boundary would have been suspected.

To summarize, we performed the first study of the
scalar flavor–singlet state in Nf = 12 QCD using
fermionic and gluonic interpolating operators. The most
striking feature of the measured scalar spectrum is the
appearance of a state lighter than the π state, as it is
shown in Fig. 4. Such a state appears both in gluonic
and fermionic correlators at small bare fermion mass.
Clear signals in our simulations were possible thanks to
the following salient features: 1. Small taste–symmetry
breaking, 2. Efficient noise–reduction methods, 3. Large
configuration ensembles, and 4. Slow damping of D(t)
thanks to small mσ.

We regard the light scalar state observed for Nf = 12
in this study, as a reflection of the dilatonic nature of the
conformal dynamics, since otherwise the p–wave bound
state (scalar) is expected to be heavier than the s–wave
one (pseudo–scalar). Thus, it is a promising signal for
a walking theory, where a similar conformal dynamics in
a wide infrared region should be operative in the chiral
limit to form a dilatonic state with mass of O(Fπ), in
such a way that the tiny spontaneous–breaking–scale Fπ

plays the role of mf (cfr. Ref. [11]).

While further investigation of the scalar state in Nf =
12 QCD, such as a possible lattice spacing dependence,
is important, the most pressing future direction is to
look at more viable candidates for walking technicolor
models. For example, it will be interesting to investi-
gate the scalar spectrum of the Nf = 8 SU(3) theory,
which was shown to be a good candidate for the walking
technicolor [11], where the scalar state could be identi-
fied with the technidilaton, a pseudo Nambu–Goldstone
boson coming from the dynamical breaking of conformal
symmetry. There actually exists an indication of such a
light scalar in Nf = 8 QCD [38].
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• with very high statistics

• and a variance reduction

• we got a reasonable signal
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FIG. 3: Fermionic mσ and gluonic mG effective masses (re-
spectively from correlators in Eq. (4) and Eq. (5)) for L = 24
and mf = 0.06. The fitted masses are highlighted by dashed
and dotted-dashed lines for the gluonic correlators and dotted
lines for the fermionic one. Systematics effects on the gluonic
mass are not relevant given the larger statistical error.
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FIG. 4: The mass of the flavor–singlet scalar meson σ (see
Table I) compared to the mass of the pseudo–scalar π state
and the mass mG from gluonic operators. Errors are statis-
tical and systematics added in quadrature. The hyperscaling
curve is described in the text. The triangle and filleds square
symbols are slightly shifted for clarity.

each parameter. For mσ on the largest two volumes at
each mf , finite size effects are negligible in our statis-
tics. For a check of consistency with the hyperscaling of
mπ, we fit mσ on the largest volume data at each mf

using the hyperscaling form mσ = C(mf )1/1+γ with a
fixed γ = 0.414 estimated from mπ [10], which gives a
reasonable value of χ2/dof = 0.12. The fit is shown in
Fig.4. We remind here that the fitted data points have
mπL > 11.5, as can be checked from Table. I. We also es-
timate the ratio mσ/mπ at each parameter and report it
in Table I. All the ratios are smaller than unity by more
than one standard deviation including the systematic er-
ror, except the one atmf = 0.06 on L = 30, as previously
explained. A constant fit with the largest volume data at

each mf gives 0.86(3). These results are consistent with
the theory being infrared conformal. Moreover they do
not show an abnormal mf dependence of mσ similar to
the one observed in Ref. [23], by which an effect of an
unphysical phase boundary would have been suspected.

To summarize, we performed the first study of the
scalar flavor–singlet state in Nf = 12 QCD using
fermionic and gluonic interpolating operators. The most
striking feature of the measured scalar spectrum is the
appearance of a state lighter than the π state, as it is
shown in Fig. 4. Such a state appears both in gluonic
and fermionic correlators at small bare fermion mass.
Clear signals in our simulations were possible thanks to
the following salient features: 1. Small taste–symmetry
breaking, 2. Efficient noise–reduction methods, 3. Large
configuration ensembles, and 4. Slow damping of D(t)
thanks to small mσ.

We regard the light scalar state observed for Nf = 12
in this study, as a reflection of the dilatonic nature of the
conformal dynamics, since otherwise the p–wave bound
state (scalar) is expected to be heavier than the s–wave
one (pseudo–scalar). Thus, it is a promising signal for
a walking theory, where a similar conformal dynamics in
a wide infrared region should be operative in the chiral
limit to form a dilatonic state with mass of O(Fπ), in
such a way that the tiny spontaneous–breaking–scale Fπ

plays the role of mf (cfr. Ref. [11]).

While further investigation of the scalar state in Nf =
12 QCD, such as a possible lattice spacing dependence,
is important, the most pressing future direction is to
look at more viable candidates for walking technicolor
models. For example, it will be interesting to investi-
gate the scalar spectrum of the Nf = 8 SU(3) theory,
which was shown to be a good candidate for the walking
technicolor [11], where the scalar state could be identi-
fied with the technidilaton, a pseudo Nambu–Goldstone
boson coming from the dynamical breaking of conformal
symmetry. There actually exists an indication of such a
light scalar in Nf = 8 QCD [38].
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✴π was lightest in QCD (Nf=2)
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FIG. 3: Fermionic mσ and gluonic mG effective masses (re-
spectively from correlators in Eq. (4) and Eq. (5)) for L = 24
and mf = 0.06. The fitted masses are highlighted by dashed
and dotted-dashed lines for the gluonic correlators and dotted
lines for the fermionic one. Systematics effects on the gluonic
mass are not relevant given the larger statistical error.
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FIG. 4: The mass of the flavor–singlet scalar meson σ (see
Table I) compared to the mass of the pseudo–scalar π state
and the mass mG from gluonic operators. Errors are statis-
tical and systematics added in quadrature. The hyperscaling
curve is described in the text. The triangle and filleds square
symbols are slightly shifted for clarity.

each parameter. For mσ on the largest two volumes at
each mf , finite size effects are negligible in our statis-
tics. For a check of consistency with the hyperscaling of
mπ, we fit mσ on the largest volume data at each mf

using the hyperscaling form mσ = C(mf )1/1+γ with a
fixed γ = 0.414 estimated from mπ [10], which gives a
reasonable value of χ2/dof = 0.12. The fit is shown in
Fig.4. We remind here that the fitted data points have
mπL > 11.5, as can be checked from Table. I. We also es-
timate the ratio mσ/mπ at each parameter and report it
in Table I. All the ratios are smaller than unity by more
than one standard deviation including the systematic er-
ror, except the one atmf = 0.06 on L = 30, as previously
explained. A constant fit with the largest volume data at

each mf gives 0.86(3). These results are consistent with
the theory being infrared conformal. Moreover they do
not show an abnormal mf dependence of mσ similar to
the one observed in Ref. [23], by which an effect of an
unphysical phase boundary would have been suspected.

To summarize, we performed the first study of the
scalar flavor–singlet state in Nf = 12 QCD using
fermionic and gluonic interpolating operators. The most
striking feature of the measured scalar spectrum is the
appearance of a state lighter than the π state, as it is
shown in Fig. 4. Such a state appears both in gluonic
and fermionic correlators at small bare fermion mass.
Clear signals in our simulations were possible thanks to
the following salient features: 1. Small taste–symmetry
breaking, 2. Efficient noise–reduction methods, 3. Large
configuration ensembles, and 4. Slow damping of D(t)
thanks to small mσ.

We regard the light scalar state observed for Nf = 12
in this study, as a reflection of the dilatonic nature of the
conformal dynamics, since otherwise the p–wave bound
state (scalar) is expected to be heavier than the s–wave
one (pseudo–scalar). Thus, it is a promising signal for
a walking theory, where a similar conformal dynamics in
a wide infrared region should be operative in the chiral
limit to form a dilatonic state with mass of O(Fπ), in
such a way that the tiny spontaneous–breaking–scale Fπ

plays the role of mf (cfr. Ref. [11]).

While further investigation of the scalar state in Nf =
12 QCD, such as a possible lattice spacing dependence,
is important, the most pressing future direction is to
look at more viable candidates for walking technicolor
models. For example, it will be interesting to investi-
gate the scalar spectrum of the Nf = 8 SU(3) theory,
which was shown to be a good candidate for the walking
technicolor [11], where the scalar state could be identi-
fied with the technidilaton, a pseudo Nambu–Goldstone
boson coming from the dynamical breaking of conformal
symmetry. There actually exists an indication of such a
light scalar in Nf = 8 QCD [38].
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• results by SCALAR Collab.
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flavor singlet scalar spectrum in Nf=12 theory

• with very high statistics

• and a variance reduction

• we got a reasonable signal

✴π was lightest in QCD (Nf=2)

• results by SCALAR Collab.

• σ is lightest for Nf=12 SU(3):
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FIG. 3: Fermionic mσ and gluonic mG effective masses (re-
spectively from correlators in Eq. (4) and Eq. (5)) for L = 24
and mf = 0.06. The fitted masses are highlighted by dashed
and dotted-dashed lines for the gluonic correlators and dotted
lines for the fermionic one. Systematics effects on the gluonic
mass are not relevant given the larger statistical error.
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FIG. 4: The mass of the flavor–singlet scalar meson σ (see
Table I) compared to the mass of the pseudo–scalar π state
and the mass mG from gluonic operators. Errors are statis-
tical and systematics added in quadrature. The hyperscaling
curve is described in the text. The triangle and filleds square
symbols are slightly shifted for clarity.

each parameter. For mσ on the largest two volumes at
each mf , finite size effects are negligible in our statis-
tics. For a check of consistency with the hyperscaling of
mπ, we fit mσ on the largest volume data at each mf

using the hyperscaling form mσ = C(mf )1/1+γ with a
fixed γ = 0.414 estimated from mπ [10], which gives a
reasonable value of χ2/dof = 0.12. The fit is shown in
Fig.4. We remind here that the fitted data points have
mπL > 11.5, as can be checked from Table. I. We also es-
timate the ratio mσ/mπ at each parameter and report it
in Table I. All the ratios are smaller than unity by more
than one standard deviation including the systematic er-
ror, except the one atmf = 0.06 on L = 30, as previously
explained. A constant fit with the largest volume data at

each mf gives 0.86(3). These results are consistent with
the theory being infrared conformal. Moreover they do
not show an abnormal mf dependence of mσ similar to
the one observed in Ref. [23], by which an effect of an
unphysical phase boundary would have been suspected.

To summarize, we performed the first study of the
scalar flavor–singlet state in Nf = 12 QCD using
fermionic and gluonic interpolating operators. The most
striking feature of the measured scalar spectrum is the
appearance of a state lighter than the π state, as it is
shown in Fig. 4. Such a state appears both in gluonic
and fermionic correlators at small bare fermion mass.
Clear signals in our simulations were possible thanks to
the following salient features: 1. Small taste–symmetry
breaking, 2. Efficient noise–reduction methods, 3. Large
configuration ensembles, and 4. Slow damping of D(t)
thanks to small mσ.

We regard the light scalar state observed for Nf = 12
in this study, as a reflection of the dilatonic nature of the
conformal dynamics, since otherwise the p–wave bound
state (scalar) is expected to be heavier than the s–wave
one (pseudo–scalar). Thus, it is a promising signal for
a walking theory, where a similar conformal dynamics in
a wide infrared region should be operative in the chiral
limit to form a dilatonic state with mass of O(Fπ), in
such a way that the tiny spontaneous–breaking–scale Fπ

plays the role of mf (cfr. Ref. [11]).

While further investigation of the scalar state in Nf =
12 QCD, such as a possible lattice spacing dependence,
is important, the most pressing future direction is to
look at more viable candidates for walking technicolor
models. For example, it will be interesting to investi-
gate the scalar spectrum of the Nf = 8 SU(3) theory,
which was shown to be a good candidate for the walking
technicolor [11], where the scalar state could be identi-
fied with the technidilaton, a pseudo Nambu–Goldstone
boson coming from the dynamical breaking of conformal
symmetry. There actually exists an indication of such a
light scalar in Nf = 8 QCD [38].
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each parameter. For mσ on the largest two volumes at
each mf , finite size effects are negligible in our statis-
tics. For a check of consistency with the hyperscaling of
mπ, we fit mσ on the largest volume data at each mf

using the hyperscaling form mσ = C(mf )1/1+γ with a
fixed γ = 0.414 estimated from mπ [10], which gives a
reasonable value of χ2/dof = 0.12. The fit is shown in
Fig.4. We remind here that the fitted data points have
mπL > 11.5, as can be checked from Table. I. We also es-
timate the ratio mσ/mπ at each parameter and report it
in Table I. All the ratios are smaller than unity by more
than one standard deviation including the systematic er-
ror, except the one atmf = 0.06 on L = 30, as previously
explained. A constant fit with the largest volume data at

each mf gives 0.86(3). These results are consistent with
the theory being infrared conformal. Moreover they do
not show an abnormal mf dependence of mσ similar to
the one observed in Ref. [23], by which an effect of an
unphysical phase boundary would have been suspected.

To summarize, we performed the first study of the
scalar flavor–singlet state in Nf = 12 QCD using
fermionic and gluonic interpolating operators. The most
striking feature of the measured scalar spectrum is the
appearance of a state lighter than the π state, as it is
shown in Fig. 4. Such a state appears both in gluonic
and fermionic correlators at small bare fermion mass.
Clear signals in our simulations were possible thanks to
the following salient features: 1. Small taste–symmetry
breaking, 2. Efficient noise–reduction methods, 3. Large
configuration ensembles, and 4. Slow damping of D(t)
thanks to small mσ.

We regard the light scalar state observed for Nf = 12
in this study, as a reflection of the dilatonic nature of the
conformal dynamics, since otherwise the p–wave bound
state (scalar) is expected to be heavier than the s–wave
one (pseudo–scalar). Thus, it is a promising signal for
a walking theory, where a similar conformal dynamics in
a wide infrared region should be operative in the chiral
limit to form a dilatonic state with mass of O(Fπ), in
such a way that the tiny spontaneous–breaking–scale Fπ

plays the role of mf (cfr. Ref. [11]).

While further investigation of the scalar state in Nf =
12 QCD, such as a possible lattice spacing dependence,
is important, the most pressing future direction is to
look at more viable candidates for walking technicolor
models. For example, it will be interesting to investi-
gate the scalar spectrum of the Nf = 8 SU(3) theory,
which was shown to be a good candidate for the walking
technicolor [11], where the scalar state could be identi-
fied with the technidilaton, a pseudo Nambu–Goldstone
boson coming from the dynamical breaking of conformal
symmetry. There actually exists an indication of such a
light scalar in Nf = 8 QCD [38].
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each parameter. For mσ on the largest two volumes at
each mf , finite size effects are negligible in our statis-
tics. For a check of consistency with the hyperscaling of
mπ, we fit mσ on the largest volume data at each mf

using the hyperscaling form mσ = C(mf )1/1+γ with a
fixed γ = 0.414 estimated from mπ [10], which gives a
reasonable value of χ2/dof = 0.12. The fit is shown in
Fig.4. We remind here that the fitted data points have
mπL > 11.5, as can be checked from Table. I. We also es-
timate the ratio mσ/mπ at each parameter and report it
in Table I. All the ratios are smaller than unity by more
than one standard deviation including the systematic er-
ror, except the one atmf = 0.06 on L = 30, as previously
explained. A constant fit with the largest volume data at

each mf gives 0.86(3). These results are consistent with
the theory being infrared conformal. Moreover they do
not show an abnormal mf dependence of mσ similar to
the one observed in Ref. [23], by which an effect of an
unphysical phase boundary would have been suspected.

To summarize, we performed the first study of the
scalar flavor–singlet state in Nf = 12 QCD using
fermionic and gluonic interpolating operators. The most
striking feature of the measured scalar spectrum is the
appearance of a state lighter than the π state, as it is
shown in Fig. 4. Such a state appears both in gluonic
and fermionic correlators at small bare fermion mass.
Clear signals in our simulations were possible thanks to
the following salient features: 1. Small taste–symmetry
breaking, 2. Efficient noise–reduction methods, 3. Large
configuration ensembles, and 4. Slow damping of D(t)
thanks to small mσ.

We regard the light scalar state observed for Nf = 12
in this study, as a reflection of the dilatonic nature of the
conformal dynamics, since otherwise the p–wave bound
state (scalar) is expected to be heavier than the s–wave
one (pseudo–scalar). Thus, it is a promising signal for
a walking theory, where a similar conformal dynamics in
a wide infrared region should be operative in the chiral
limit to form a dilatonic state with mass of O(Fπ), in
such a way that the tiny spontaneous–breaking–scale Fπ

plays the role of mf (cfr. Ref. [11]).

While further investigation of the scalar state in Nf =
12 QCD, such as a possible lattice spacing dependence,
is important, the most pressing future direction is to
look at more viable candidates for walking technicolor
models. For example, it will be interesting to investi-
gate the scalar spectrum of the Nf = 8 SU(3) theory,
which was shown to be a good candidate for the walking
technicolor [11], where the scalar state could be identi-
fied with the technidilaton, a pseudo Nambu–Goldstone
boson coming from the dynamical breaking of conformal
symmetry. There actually exists an indication of such a
light scalar in Nf = 8 QCD [38].
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each parameter. For mσ on the largest two volumes at
each mf , finite size effects are negligible in our statis-
tics. For a check of consistency with the hyperscaling of
mπ, we fit mσ on the largest volume data at each mf

using the hyperscaling form mσ = C(mf )1/1+γ with a
fixed γ = 0.414 estimated from mπ [10], which gives a
reasonable value of χ2/dof = 0.12. The fit is shown in
Fig.4. We remind here that the fitted data points have
mπL > 11.5, as can be checked from Table. I. We also es-
timate the ratio mσ/mπ at each parameter and report it
in Table I. All the ratios are smaller than unity by more
than one standard deviation including the systematic er-
ror, except the one atmf = 0.06 on L = 30, as previously
explained. A constant fit with the largest volume data at

each mf gives 0.86(3). These results are consistent with
the theory being infrared conformal. Moreover they do
not show an abnormal mf dependence of mσ similar to
the one observed in Ref. [23], by which an effect of an
unphysical phase boundary would have been suspected.

To summarize, we performed the first study of the
scalar flavor–singlet state in Nf = 12 QCD using
fermionic and gluonic interpolating operators. The most
striking feature of the measured scalar spectrum is the
appearance of a state lighter than the π state, as it is
shown in Fig. 4. Such a state appears both in gluonic
and fermionic correlators at small bare fermion mass.
Clear signals in our simulations were possible thanks to
the following salient features: 1. Small taste–symmetry
breaking, 2. Efficient noise–reduction methods, 3. Large
configuration ensembles, and 4. Slow damping of D(t)
thanks to small mσ.

We regard the light scalar state observed for Nf = 12
in this study, as a reflection of the dilatonic nature of the
conformal dynamics, since otherwise the p–wave bound
state (scalar) is expected to be heavier than the s–wave
one (pseudo–scalar). Thus, it is a promising signal for
a walking theory, where a similar conformal dynamics in
a wide infrared region should be operative in the chiral
limit to form a dilatonic state with mass of O(Fπ), in
such a way that the tiny spontaneous–breaking–scale Fπ

plays the role of mf (cfr. Ref. [11]).

While further investigation of the scalar state in Nf =
12 QCD, such as a possible lattice spacing dependence,
is important, the most pressing future direction is to
look at more viable candidates for walking technicolor
models. For example, it will be interesting to investi-
gate the scalar spectrum of the Nf = 8 SU(3) theory,
which was shown to be a good candidate for the walking
technicolor [11], where the scalar state could be identi-
fied with the technidilaton, a pseudo Nambu–Goldstone
boson coming from the dynamical breaking of conformal
symmetry. There actually exists an indication of such a
light scalar in Nf = 8 QCD [38].
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Nf=8 scalar: Update after Lattice 2013
Flavor-singlet scalar mass mσ in Nf = 8
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Nf=8 scalar: Update after Lattice 2013
Chiral extrapolation (1) in Nf = 8
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Nf=8 scalar: Update after Lattice 2013
Chiral extrapolation (2) in Nf = 8
ChPT with scale symmetry breaking ’13 Matsuzaki and Yamawaki
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Summary and Outlook

• LatKMI collaboration is investigating the physics near the conformal phase 
boundary in SU(3) gauge theory.


• There appears one candidate of walking technicolor theory Nf=8 QCD, that 
could accommodate 125 GeV Higgs found at LHC.


• Solidness of the emerging picture will have to be investigated further:


• precision needs to be improved


• controversial pictures (conformality) from different collaborations


• Calculation / technology development for other quantities are underway


• S parameter:  a method proposed for vacuum polarization function


• low energy parameters in π and σ as effective light elements...



Thank you very much for your attention !


